3D printing of cellulose nanocrystals based composites to build robust biomimetic scaffolds for bone tissue engineering

  • Noyes, F. R. Noyes’ Knee Disorders: Surgery, Rehabilitation, Clinical Outcomes E-Book (Elsevier Health Sciences, 2016).

    Google Scholar 

  • Kanwar, S. & Vijayavenkataraman, S. Bioprinting design of 3D printed scaffolds for bone tissue engineering: A review. Bioprinting 24, e00167 (2021).

    Article 

    Google Scholar 

  • Krzysztof, P. & Pokrowiecki, R. Porous titanium implants: A review. Adv. Mater. Eng. 20, 1700648 (2018).

    Article 

    Google Scholar 

  • Aro, H. T. & Aho, A. J. The clinical use of bone allografts. Ann. Med. 25, 403–412 (1993).

    Article 
    CAS 

    Google Scholar 

  • Iqbal, N. See et. The most recent concepts in tissue engineering using biodegradable plastics. Int. Mater. Rev. 64, 91–126 (2019).

    Article 
    CAS 

    Google Scholar 

  • Bose, S., Roy, M. & Bandyopadhyay, A. New advances in bone tissue engineering and scaffolds. Trends in Biotechnol 30, 546–554 (2012).

    Article 
    CAS 

    Google Scholar 

  • Porter, J. R., Ruckh, T. T. & Popat, K. C. Bone tissue engineering: A review in bone biomimetics and drug delivery strategies. Biotechnol. Prog. 25, 1539–1560 (2009).

    CAS 

    Google Scholar 

  • Obrien F. J. Tissue engineering scaffolds and biomaterials Mater. Today 14, 88–95 (2011).

    Article 
    CAS 

    Google Scholar 

  • Ma, P. X. Scaffolds used for tissue production Mater. Today 7, 30–40 (2004).

    Article 
    CAS 

    Google Scholar 

  • Cheung, H.-Y., Lau, K.-T., Lu, T.-P. & Hui, D. A critical review on polymer-based bio-engineered materials for scaffold development. Compos. Part B Eng. 38, 291–300 (2007).

    Article 

    Google Scholar 

  • Jonoobi, M., Harun, J., Mathew, A. P. & Oksman, K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos. Sci. Technol. 70, 1742–1747 (2010).

    Article 
    CAS 

    Google Scholar 

  • Patel, D. K., Deb, S., Hexiu, J., Ganguly, K. & Lim, K. Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/ cellulose nanocrystals for bone tissue engineering. Int. J. Biol. Macromol. 162, 1429–1441 (2020).

    Article 
    CAS 

    Google Scholar 

  • Elena, M. See et. Three-dimensional printed polycaprolactone-microcrystalline cellulose scaffolds. J. Biomed. Mater. Res. Res. 107B, 521–528 (2019).

    Google Scholar 

  • Cakmak, A. M. See et. 3D printed polycaprolactone/gelatin/bacterial cellulose/hydroxyapatite composite scaffold for bone tissue engineering. Polymers (Basel). 12, 1962 (2020).

    Article 
    CAS 

    Google Scholar 

  • Meftahi, A. See et. For skincare and cosmetics: Regulations and new applications. Carbohydr. Polym. 278, 118956 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bhattarai, N., Li, Z., Edmondson, D. & Zhang, M. Alginate-based nanofibrous scaffolds: Structural, mechanical, and biological properties. Adv. Mater. 18, 1463–1467 (2006).

    Article 
    CAS 

    Google Scholar 

  • Feng, B., Tu, H., Yuan, H., Peng, H. & Zhang, Y. Acetic-acid-mediated miscibility toward electrospinning homogeneous composite nanofibers of GT/PCL. Biomacromol 13, 3917–3925 (2012).

    Article 
    CAS 

    Google Scholar 

  • Bhattarai, N. See et. For biomedical purposes, natural-synthetic synthetic polyblend nanofibers are available. Adv. Mater. 21, 2792–2797 (2009).

    Article 
    CAS 

    Google Scholar 

  • Pon-on, W., Suntornsaratoon, P. & Charoenphandhu, N. Synthesis and investigations of mineral ions-loaded apatite from fish scale and PLA/chitosan composite for bone scaffolds. Mater. Lett. 221, 143–146 (2018).

    Article 
    CAS 

    Google Scholar 

  • Edwards, A., Jarvis, D., Hopkins, T., Pixley, S. & Bhattarai, N. Poly(ε-caprolactone)/keratin-based composite nanofibers for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 103, 21–30 (2015).

    Article 

    Google Scholar 

  • Belaid, H. See et. Boron nitride based nanobiocomposites : design by 3D printing for bone tissue engineering. Acs Appl. Bio Mater. 3, 1865–1875 (2020).

    Article 
    CAS 

    Google Scholar 

  • Soundarya, S. P., Menon, A. H., Chandran, S. V. & Selvamurugan, N. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int. J. Biol. Macromol. 119, 1228–1239 (2018).

    Article 

    Google Scholar 

  • Guo, L. See et. Natural polymers and bone tissue engineering: What is their role? J. Control. Control 338, 571–582 (2021).

    Article 
    CAS 

    Google Scholar 

  • Martínez-moreno, D., Jim, G. & Marchal, J. A. A. Mater. Sci. Eng. Eng. 122, 111933 (2021).

    Article 

    Google Scholar 

  • Bobbert, F. S. L. & Zadpoor, A. A. The effects of bone substitute structure and its surface properties on cell responses, angiogenesis and the formation of new bone. Mater. Chem. Chem. 5, 6157–6414 (2017).

    Article 

    Google Scholar 

  • Mirkhalaf, M. See et. 3D-printed scaffolds: Redefining architectural effects through rational design to optimize bone tissue regeneration Appl. Mater. Today 25, 101168 (2021).

    Article 

    Google Scholar 

  • Shirzad, M., Zolfagharian, A., Matbouei, A. & Bodaghi, M. Design, evaluation, and optimization of 3D printed truss scaffolds for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 120, 104594 (2021).

    Article 
    CAS 

    Google Scholar 

  • Radhakrishnan, S. See et. 3D-printed antimicrobial polycaprolactone scaffolds are being made for tissue engineering purposes. Mater. Sci. Eng. C 118, 111525 (2021).

    Article 
    CAS 

    Google Scholar 

  • Belaid, H. See et. New biocompatible, 3D-printed graphene oxide-based scaffolds. Mater. Sci. Eng. C 110, 110595 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, W. See et. Pla/n-HA composite scaffolds can be 3D printed with custom mechanical and biological properties for bone tissue engineering. Compos. Compos. 224, 109192 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mondal, S., Phuoc, T., Pham, V. H. & Hoang, G. Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram. Int. 46, 3443–3455 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhang, B. See et. Regenerative PLA/HA bone tissue 3D printing scaffolds, with extensive performance optimizations Mater. Des. 201, 109490 (2021).

    Article 
    CAS 

    Google Scholar 

  • Du, J. See et. Comparison of neural differentiation between chitosan and cellulose acetate. Carbohydr. Polym. 99, 483–490 (2014).

    Article 
    CAS 

    Google Scholar 

  • Shi, Q. See et. Osteogenesis using a bacterial cellulose scaffold containing bone morphogenetic proteins-2. Biomaterials 33, 6644–6649 (2012).

    Article 
    CAS 

    Google Scholar 

  • Joseph, B., Sagarika, V. K., Sabu, C., Kalarikkal, N. & Thomas, S. Cellulose nanocomposites: Fabrication and biomedical applications. J. Bioresour. Bioprod. 5, 223–237 (2020).

    Article 
    CAS 

    Google Scholar 

  • Lin, N. & Dufresne, A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J. 59, 302–325 (2014).

    Article 
    CAS 

    Google Scholar 

  • Murizan, N. I. S., Mustafa, N. S., Ngadiman, N. H. A., Mohd Yusof, N. & Idris, A. Nanocrystalline cellulose and bone tissue engineering: A review. Polymers (Basel). 12, 2818 (2020).

    Article 
    CAS 

    Google Scholar 

  • Shuai, C., Yuan, X., Yang, W., Peng, S. & Qian, G. Synthesis of a mace-like cellulose nanocrystal @ Ag nanosystem via in-situ growth for antibacterial activities of poly-L-lactide scaffold. Carbohydr. Polym. 262, 117937 (2021).

    Article 
    CAS 

    Google Scholar 

  • He, Y., Li, H., Fei, X. & Peng, L. Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. Carbohydr. Polym. 252, 117156 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kumar, A. See et. The crosslinking of functionality has an effect on microstructure, mechanical property, and in vitro cellocompatibility for cellulose nanocrystals reinforced by poly(vinyl Alcohol)/sodium Alginate hybrid scaffolds. Int. J. Biol. Macromol. 95, 962–973 (2017).

    Article 
    CAS 

    Google Scholar 

  • Rashtchian, M., Hivechi, A., Bahrami, S. H., Milan, P. B. & Simorgh, S. Fabricating alginate/poly(caprolactone) nano fibers with enhanced bio-mechanical properties via cellulose nanocrystal incorporation. Carbohydr. Polym. 233, 115873 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kumar, A., Madhusudana, K. & Soo, S. Development of sodium alginate-xanthan gum based nanocomposite scaffolds reinforced with cellulose nanocrystals and halloysite nanotubes. Polym. Test. 63, 214–225 (2017).

    Article 
    CAS 

    Google Scholar 

  • Kumar, A., Rao, K. M. & Han, S. S. Mechanically viscoelastic nanoreinforced hybrid hydrogels composed of polyacrylamide, sodium carboxymethylcellulose, graphene oxide, and cellulose nanocrystals. Carbohydr. Polym. 193, 228–238 (2018).

    Article 
    CAS 

    Google Scholar 

  • Sucinda, E. F. See et. International journal of biologic macromolecules characterisation and development of packaging film using Napier cellulose nanowhisker-reinforced polylactic acid (PLA), bionanocomposites. Int. J. Biol. Macromol. 187, 43–53 (2021).

    Article 
    CAS 

    Google Scholar 

  • Vorawongsagul, S., Pratumpong, P. & Pechyen, C. Preparation and foaming behavior of poly(lactic acid)/poly(butylene succinate)/cellulose fiber composite for hot cups packaging application. Packag for Food The Shelf Life 27, 100608 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ghaffari-bohlouli, P., Jafari, H., Khatibi, A., Bakhtiari, M. & Tavana, B. Osteogenesis enhancement using poly (L-lactide-co-D, L-lactide)/poly(vinyl alcohol) nano fi brous scaffolds reinforced by phospho-calcified cellulose nanowhiskers. Int. J. Biol. Macromol. 182, 168–178 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cui, L. See et. Regenerated Cellulose/PLA nanocomposites – Rheology: Network formation, modeling Mater. Des. 206, 109774 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chen, J., Zhang, T., Hua, W., Li, P. & Wang, X. The 3D porous polylactic and regenerated cellulose composite scaffolds are based upon electrospun nanofibers that can be used for biomineralization. Colloids Surf. A Physicochem. Eng. Asp. 585, 124048 (2019).

    Article 

    Google Scholar 

  • Rajeshkumar, G. See et. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites—A comprehensive review. J. Clean. Prod. 310, 127483 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mao, D., Li, Q., Bai, N., Dong, H. & Li, D. Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration. Carbohydr. Polym. 180, 104–111 (2018).

    Article 
    CAS 

    Google Scholar 

  • Yan, D. See et. For ocular cell proliferation, antimicrobial applications and surface modified electrospun poly (lactic Acid ), a fibrous scaffold with Ag nanoparticles and cellulose nanofibroils. Mater. Sci. Eng. Eng. 111, 110767 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kumar, S. D., Venkadeshwaran, K. & Aravindan, M. K. Fused deposition modelling of PLA reinforced with cellulose nano-crystals. Mater. Today, Proc. 33, 868–875 (2020).

    Article 

    Google Scholar 

  • Wang, Z. See et. Preparation of 3D printable micro/nanocellulose-polylactic acid (MNC/PLA) composite wire rods with high MNC constitution. Ind. Crop. Prod. 109, 889–896 (2017).

    Article 
    CAS 

    Google Scholar 

  • Wang, Q., Ji, C., Sun, L., Sun, J. & Liu, J. Cellulose nanofibrils filled poly(lactic acid) biocomposite filament for FDM 3D printing. Molecules 25, 2319 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hafizi, W., Ishak, W., Rosli, N. A. & Ahmad, I. The influence of amorphouscellulose on the mechanical, thermological, and hydrolytic degradation of poly(lactic Acid) biocomposites. Sci. Rep. 10, 11342 (2020).

    Article 

    Google Scholar 

  • Murphy, C. A. & Collins, M. N. Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing. Polym. Compos. 39, 1311–1320 (2018).

    Article 
    CAS 

    Google Scholar 

  • Nagarajan, S. See et. For bone tissue engineering, design of gelatin/boron nitride nanofibers. ACS Appl. Mater. Mater. 9, 33695–33706 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cataldi, A., Rigotti, D., Nguyen, V. D. H. & Pegoretti, A. Polyvinyl alcohol reinforced with crystalline nanocellulose for 3D printing application. Mater. Today Commun. 15, 236–244 (2018).

    Article 
    CAS 

    Google Scholar 

  • Azarudeen, R. S. See et. 3D printable polycaprolactone-gelatin blends characterized for in vitro osteogenic potency Raja. React. Funct. Polym. 146, 104445 (2020).

    Article 
    CAS 

    Google Scholar 

  • Alam, F., Shukla, V. R., Varadarajan, K. M. & Kumar, S. Microarchitected polylactic acid (PLA) nanocomposite scaffolds for biomedical applications. J. Mech. Behav. Biomed. Mater. 103, 103576 (2020).

    Article 
    CAS 

    Google Scholar 

  • Stoof, D. & Pickering, K. Fused deposition modelling of natural fibre/polylactic acid composites. J. Compos. Sci. 1, 8 (2017).

    Article 

    Google Scholar 

  • Mazzanti, V., Malagutti, L. & Mollica, F. FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers (Basel). 11, 1094 (2019).

    Article 

    Google Scholar 

  • Xu, L., Zhao, J., Qian, S., Zhu, X. & Takahashi, J. Green-plasticized poly(lactic acid)/nanofibrillated cellulose biocomposites with high strength, good toughness and excellent heat resistance. Compos. Sci. Technol. 203, 108613 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tarrahi, R. See et. A cellulose-based scaffold is developed for the sustained delivery of curcumin. Int. J. Biol. Macromol. 183, 132–144 (2021).

    Article 
    CAS 

    Google Scholar 

  • Torgbo, S. & Sukyai, P. Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering. Mater. Chem. Phys. 237, 121868 (2019).

    Article 
    CAS 

    Google Scholar 

  • Krieghoff, J. See et. An increase in the pore size of scaffolds can improve coating efficiency and mineralization ability of osteoblasts. Biomater. Res. 23, 23–26 (2019).

    Article 

    Google Scholar 

  • Malliappan, S. P., Yetisgin, A. A., Sahin, S. B., Demir, E. & Cetinel, S. Bone tissue engineering: Anionic polysaccharides as promising scaffolds Ponnurengam. Carbohydr. Polym. 283, 119142 (2022).

    Article 
    CAS 

    Google Scholar 

  • Gorgieva, S., Girandon, L. & Kokol, V. Mineralization potential of cellulose-nano fi brils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells. Mater. Sci. Eng. C 73, 478–489 (2017).

    Article 
    CAS 

    Google Scholar 

  • K. Szustakiewicz Compos. Sci. Technol. 197, 108279 (2020).

    Article 
    CAS 

    Google Scholar 

  • Dridi, A., Zlaoui, K. & Somrani, S. Mechanism of apatite formation on a poorly crystallized calcium phosphate in a simulated body fluid (SBF) at 37 °C. J. Phys. Chem. Solids 156, 110122 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Q. See et. The mechanical properties and biomineralization multifunctional nanodiamond PLLA composites are important for bone tissue engineering. Biomaterials 33, 5067–5075 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zou, L., Zhang, Y., Liu, X., Chen, J. & Zhang, Q. Biomimetic mineralization on natural and synthetic polymers to prepare hybrid scaffolds for bone tissue engineering. Colloids Surf. Coloids Surf. 178, 222–229 (2019).

    Article 
    CAS 

    Google Scholar 

  • Syahir, M. See et. Proceedings of a possible artificial bone replacement by the entrapment collagen on a polylactic acid 3D scaffold. Mater. Today, Proc. 46, 1668–1673 (2021).

    Article 

    Google Scholar 

  • Zhang, R. & Ma, P. X. Porous poly (L-lactic acid)/apatite composites created by biomimetic process. J. Biomed. Mater. Resour. 45, 285–293 (1999).

    Article 
    CAS 

    Google Scholar 

  • Ngiam, M. See et. The fabrication of nanofibrous mineralized polymeric composites used in bone graft materials Tissue Engineering 15, 535–546 (2009).

    Article 
    CAS 

    Google Scholar 

  • Fragal, E. H. See et. From biomimetic growing of hydroxiapatite onto cellulose nanowhiskers, hybrid materials can be used to engineer bone tissue. Carbohydr. Polym. 152, 734–746 (2016).

    Article 
    CAS 

    Google Scholar 

  • Harris, S. A., Enger, R. J., Riggs, B. L. & Spelsberg, T. C. Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. J. Bone Miner. Res. 10, 178–186 (1995).

    Article 
    CAS 

    Google Scholar 

  • Zheng, D., Zhang, Y., Guo, Y. & Yue, J. The isolation and characterisation of nanocellulose in a unique form from walnutJuglans Regia L.) Shell agricultural waste. Polymers (Basel). 11, 1130 (2019).

    Article 

    Google Scholar 

  • Lee, S. H. & Song, W. S. Modification of polylactic acid fabric by two lipolytic enzyme hydrolysis. Text. Res. J. 83, 229–237 (2013).

    Article 

    Google Scholar 

  • Lee, S. H., Kim, I. Y. & Song, W. S. Biodegradation of polylactic acid (PLA) fibers using different enzymes. Macromol. Res. 22, 657–663 (2014).

    Article 
    CAS 

    Google Scholar 

  • Kokubo, T. & Takadama, H. How useful is SBF in predicting in vivo bone bioactivity ?. Biomaterials 27, 2907–2915 (2006).

    Article 
    CAS 

    Google Scholar 

  • Previous post nano3Dprint introduces improved A2200 electronics 3D printer: technical specifications and pricing
    Next post Students at Back Bay High School design their futures at campus Spyder